$295 – $595

Technical Introduction to AI, Machine Learning & Deep Learning

Event Information

Share this event

Date and Time

Location

Location

San Francisco

San Francisco, CA

View Map

Friends Who Are Going
Event description

Description

“Artificial Intelligence, deep learning, machine learning — whatever you’re doing if you don’t understand it — learn it. Because otherwise you’re going to be a dinosaur within 3 years.” - Mark Cuban


Machine learning is creating a global business revolution and it’s not going to stop. Leading companies like Google, Amazon, and Facebook are betting their futures on AI. Even engineers who have had success in the past need to continue their technical education as startups and organizations of all kinds can’t hire AI & machine learning engineers fast enough. While there are plenty of online resources, we know it's tough to learn a technical topic without a teacher. We're bringing together expert engineers in the field of machine learning, deep learning & AI who will help you learn the basics in a hands-on & action-packed day.

The course is expertly designed to leave you with the ability to take training data, do feature selection and actually build models for applications like content categorization, sentiment analysis, and image recognition. By the end of the day, students will be able to use models in their day-to-day work. You will also walk away with a high-level understanding of how common models such as Deep Neural Networks, SVMs, Logistic Regression and Naive Bayes work and when to use them.

Technologies Introduced

  • Intro to Machine Learning

    • Scikit-learn

    • Numpy

    • Jupyter

  • Intro to Machine Learning Platforms

    • Azure ML

    • Amazon ML

    • IBM Watson

  • Intro to Deep Learning

    • TensorFlow

    • Keras

Prerequisites

We try to make this class as accessible as possible. Some proficiency with Python is necessary. If you can open up a Jupyter notebook and install requisite software that’s helpful but we’ll also cover how to do that quickly in the beginning.

What will be provided

We will provide all the food, drinks & coffee your heart desires as well as provide the leave behind tools and resources for your continued success.

What you Need to bring

You must also bring your own laptop (don’t forget your charger). If you bring a laptop with a GPU that supports CUDA (for example a MacBook with Mac OS X 10.11 or later), we’ll see if we can make it GPU accelerated.

Talent

Lukas Biewald: Lukas Biewald is the founder of CrowdFlower, an Artificial Intelligence company that works with data science teams at Google, Bloomberg, Facebook and hundreds of other organizations to make machine learning work in the real world. Prior to that, Lukas was the first data scientist at Powerset (Acquired by Microsoft and rebranded as Bing) and a scientist at Yahoo!, Lukas was shipping machine learning algorithms to hundreds of millions of users.

Lukas frequently teaches invited Machine Learning workshops with Galvanize, O’Reilly and ODSC. He was a TA for Stanford’s machine learning class in 2003. He is a frequent contributor to Computerworld, Forbes and O’Reilly and has presented at the best-known machine learning-related academic conferences such as AAAI, SIGIR, ACL and EMNLP. He’s had the honor of being in Inc’s annual 30 under 30 and was also a finalist at TechCrunch Disrupt.

Curriculum

9:00 – 10:00 Breakfast and Install Requisite Software

We always take it as a personal challenge to get the prerequisite machine learning software installed on everyone’s laptop. We can all learn to uplevel our unix-fu by helping each other get set up.

10:00 – 12:00 Build a Sentiment Classifier From Scratch

Everyone builds a Twitter sentiment classifier using scikit-learn. We try multiple feature selection approaches and multiple model types. We learn some common tricks for actually making machine learning effective in the real world.

12:00-1:00 Lunch and History/Theory of Machine Learning

Eat lunch and for your dining entertainment, Lukas will introduce a little math, stats and history of how machine learning got to where it is today.

1:00-2:30 Try the Common Machine Learning Platforms

These days, there are many excellent, low cost machine learning platforms. We will try rebuilding our sentiment classifier on two of the most common: Microsoft Azure ML, Amazon ML & IBM Watson. If students want to try Google Predict or Salesforce Einstein we can do that too.

2:30-3:00 Break and Q&A

We can discuss other applications of this technology and look at how it might apply to real-world tasks that students may be working on.

3:00-5:00 Introduction to TensorFlow and Deep Neural Networks

We will learn how deep neural networks work and actually build one! If you bring a laptop with a GPU that supports CUDA (for example a MacBook with Mac OS X 10.11 or later), we’ll see if we can make it GPU accelerated.

We’ll all build a network to do handwritten digit recognition.

5:00-5:30 Wrap up and Q&A

We will finish up and discuss how to apply this knowledge directly to problems that we actually face in our jobs.

5:30-7:00 Drinks & Networking

We’ll bring together top entrepreneurs, tech executives & engineers to connect with and learn from. Plus, this is a chance to meet your classmates and teachers in an informal and fun setting.

Corporate Training:

We will host a custom & private 1 or 2 day seminar on your campus. This is ideal for organizations looking to build deep learning expertise in-house & want to customize our courses to fit your business needs.


Share with friends

Date and Time

Location

San Francisco

San Francisco, CA

View Map

Save This Event

Event Saved