Actions Panel

Nanotechnology + Synthetic Biology: Directing Evolution of Energy Materials

Merging Nanotechnology & Synthetic Biology toward Directed Evolution of Energy Materials by Elena A. Rozhkova, Argonne National Laboratory

When and where

Date and time



About this event

The biological use of solar energy for synthesis of fuels from water and carbon dioxide inspires researchers and engineers in their efforts to replace exhaustible energy sources with renewable technologies.

Environmentally friendly schemes of photocatalytic energy conversion, known as artificial photosynthesis, along with inorganic materials, also use biological structures, such as molecules, enzymes, machineries of whole microorganisms capable of light-harvesting, water splitting, carbon dioxide and proton reduction.

In this talk, I will make an argument that merging nanotechnology, biotechnology and synthetic biology approaches allows for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy materials, novel environmentally friendly catalytic, “artificial life” systems and, ultimately, to circular economy.

For example, purple membranes isolated from Halobacteria cells or, more recently, obtained via cell-free synthetic biology approaches, were integrated with TiO2 nanoparticles to produce hydrogen or reduce carbon dioxide. These new functions are not typical of the host microorganism. On the other hand, interplay between plasmon resonance of photonic (Au, Ag) nanoparticles and natural mechanisms of the same light-sensitive membranes in engineered hollow hybrids, or “artificial cell”, resulted in ATP photosynthesis.

Nanotechnology + Synthetic Biology: Directing Evolution of Energy Materials image

Dr. Rozhkova earned her Ph.D. in Chemistry at the Moscow State Institute for Fine Chemical Technology. She then worked in Japan as a postdoctoral fellow of Japan Society for Promotion of Science at Tohoku University. After moving to the US in 2003, she became a research staff member at the Chemistry Department of Princeton University, and later she moved to Chicago.

Since joining the Center for Nanoscale Materials at Argonne National Laboratory in 2007, Elena has focused on a general theme of nano-bio interfaces, one of the most exciting interdisciplinary research fields of our time. Success in this area can lead to the solution of emerging problems of civilization, for example, to provide alternative sustainable energy, to advance medical technologies in the diagnosis and treatment of incurable diseases