Sales Ended

2nd International Conference on Internet of Things, Big Data and Security (...

Event Information

Share this event

Date and Time






View Map

Friends Who Are Going
Event description


Internet of Things (IoT) is a platform and a phenomenon that allows everything to process information, communicate data, analyze context collaboratively and in the service or individuals, organizations and businesses. In the process of doing so, a large amount of data with different formats and content has to be processed efficiently, quickly and intelligently through advanced algorithms, techniques, models and tools. This new paradigm is enabled by the maturity of several different technologies, including the internet, wireless communication, cloud computing, sensors, big data analytics and machine learning algorithms.

Conference Areas

1 . Big Data Research

2 . Emerging Services and Analytics

3 . Internet of Things (IoT) Fundamentals

4 . Internet of Things (IoT) Applications

5 . Big Data for Multi-discipline Services

6 . Security, Privacy and Trust

7 . IoT Technologies

Conference Chair

Victor Chang, IBSS, Xi'an Jiaotong Liverpool University, China


Muthu Ramachandran, Leeds Beckett University, United Kingdom
Víctor Méndez Muñoz, Universitat Autònoma de Barcelona, UAB, Spain
Verena Kantere, University of Geneva, Switzerland
Gary Wills, University of Southampton, United Kingdom
Robert Walters, University of Southampton, United Kingdom


Schahram Dustdar, Vienna University of Technology, Austria
Mohammed Atiquzzaman, University of Oklahoma, United States
Chung-Sheng Li, Accenture, United States


Óscar Mortágua Pereira, University of Aveiro, Portugal

Keynote Speakers

Big Data, Smart Data and Imbalanced Classification: Preprocessing, Models and Challenges

Francisco Herrera
University of Granada

Brief Bio
Francisco Herrera (SM'15) received his M.Sc. in Mathematics in 1988 and Ph.D. in Mathematics in 1991, both from the University of Granada, Spain. He is currently a Professor in the Department of Computer Science and Artificial Intelligence at the University of Granada. He has been the supervisor of 40 Ph.D. students. He has published more than 300 journal papers that have received more than 50000 citations (Scholar Google, H-index 112). He is coauthor of the books "Genetic Fuzzy Systems" (World Scientific, 2001) and "Data Preprocessing in Data Mining" (Springer, 2015), "The 2-tuple Linguistic Model. Computing with Words in Decision Making" (Springer, 2015), "Multilabel Classification. Problem analysis, metrics and techniques" (Springer, 2016), "Multiple Instance Learning. Foundations and Algorithms" (Springer, 2016). He currently acts as Editor in Chief of the international journals "Information Fusion" (Elsevier) and “Progress in Artificial Intelligence (Springer). He acts as editorial member of a dozen of journals. He received several honors and awards: ECCAI Fellow 2009, IFSA Fellow 2013, 2010 Spanish National Award on Computer Science ARITMEL to the "Spanish Engineer on Computer Science", International Cajastur "Mamdani" Prize for Soft Computing (Fourth Edition, 2010), IEEE Transactions on Fuzzy System Outstanding 2008 and 2012 Paper Award (bestowed in 2011 and 2015 respectively), 2011 Lotfi A. Zadeh Prize Best paper Award of the International Fuzzy Systems Association, 2013 AEPIA Award to a scientific career in Artificial Intelligence, and 2014 XV Andalucía Research Prize Maimónides (by the regional government of Andalucía). He has been selected as a 2014 Thomson Reuters Highly Cited Researcher (in the fields of Computer Science and Engineering, respectively) .

Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. To overcome this issue, the MapReduce framework has arisen as a"de facto" solution. Basically, it carries out a "divide-and-conquer" distributed procedure in a fault-tolerant way to adapt for commodity hardware. Learning with imbalanced data refers to the scenario in which the amounts of instances that represent the concepts in a given problem follow a different distribution. The main issue when addressing such a learning problem is when the accuracy achieved for each class is also different. This situation occurs since the learning process of most classification algorithm is often biased towards the majority class examples, so that minorities ones are not well modeled into the final system. Being a very common scenario in real life applications, the interest of researchers and practitioners on the topic has grown significantly during these years. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts are accentuated during the data partitioning to fit the MapReduce programming style.
In this talk we will pay attention to the imbalanced big data classification problem, we will analyze the current research state of this are, the behavior of standard preprocessing techniques in this particular framework toward, and we will carry out a discussion on the challenges and future directions for the topic.

Privacy-preserving Machine Learning over Sensitive Data

Jin Li
Guangzhou University

Brief Bio
Jin Li is a professor at Guangzhou University. His research interests include design of secure protocols in Cloud Computing, cryptography, and machine learning. He served as a senior research associate at Korea Advanced Institute of Technology (Korea), VirginiaTech (U.S.A.), and Illinois Institute of Technology. He has published more than 100 papers in international conferences and journals, including IEEE INFOCOM, IEEE Transaction on Parallel and Distributed Computation, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing and ESORICS etc. His work has been cited more than 5000 times at Google Scholar and the H-Index is 28.
He also served as program chairs and committee for many international conferences such as CSE 2017, ISICA 2015, 3PGCIC20 14, ICCCN and CloudCom etc. He received two National Science Foundation of China (NSFC) Grants for his research on Security and Privacy in Cloud Computing. He is also panel of NSFC He is PI for more than 15 funding. He has been selected as one of science and technology new stars in Guangzhou and outstanding young scholar in Guangdong province.

Machine learning has been applied widely for classifying and recognizing complex data. However, security and privacy issues arise when the data are sensitive or the computing and data storage services are outsourced in the cloud computing. When the data are sensitive and the data evaluators are not fully trusted, the data have to be encrypted and traditional methods cannot be utilized to process the data. In this talk, I will introduce some basic solutions and challenges in this topic. Finally, I will show our method to solve this problem.

Important Dates


Regular Papers

Paper Submission: December 15, 2016 (expired)
Authors Notification: February 14, 2017 (extended)
Camera Ready and Registration: February 23, 2017

Position Papers

Paper Submission: January 31, 2017 (expired)
Authors Notification:
February 27, 2017
Camera Ready and Registration:
March 13, 2017


Workshop Proposal: January 17, 2017 (expired)
aper Submission: February 20, 2017
Authors Notification: March 1, 2017
Camera Ready and Registration: March 13, 2017

Doctoral Consortium

Paper Submission: February 17, 2017
Authors Notification: March 3, 2017
Camera Ready and Registration: March 15, 2017

Special Sessions

Special Session Proposal: February 2, 2017 (expired)


Tutorial Proposal: March 6, 2017


Demo Proposal: March 6, 2017


Panel Proposal: March 6, 2017

Open Communications

Paper Submission: February 17, 2017
Authors Notification: March 3, 2017
Camera Ready and Registration: March 15, 2017



This Event Listing is Promoted by
New York Media Technologies LLC in association

Share with friends

Date and Time





View Map

Save This Event

Event Saved