$799 – $1,699

2nd Global Conference on Tissue Engineering and Regenerative Medicine, Stem...

Event Information

Share this event

Date and Time



Venue will be informed to the Registered Participants

2132 NN Rijnlanderweg


View Map

Refund Policy

Refund Policy

No Refunds

Event description


Tissue Engineering and Regenerative Medicine, Stem Cell Research

Tissue Engineering and Regenerative Medicine, Stem Cell Research extends the heartiest welcome to proficient delegates, scientists, professors, students, young researchers, business executives, scholars, chemists and professionals across the globe to be a part of “2nd Global Conference on Tissue Engineering and Regenerative Medicine, Stem Cell Research", on March 25-26, 2019, to be held at Amsterdam, Netherlands. Keynote speech, exhibitions, oral and poster presentations outline the key attractions of the conference on the theme "Tissue Engineering and Regenerative Medicine, Stem Cell Research" towards Healing, Restoration and Anti-aging.
Allied Academies organizes Tissue Engineering and Regenerative Medicine, Stem Cell Research conference along with 300+ Conferences across USA, Europe & Asia every year with support from 1000 more scientific societies and Publishes 400+ Open access journals which contain over 30000 eminent personalities as editorial board members.

Scientific Sessions

Stem Cells
Scaffolds can be populated with adult-derived cells that are capable of undergoing subsequent differentiation after being cultivated in vitro. In this category are cells of the skin, cartilage, muscle,tendon, ligament, bone, adipose tissue, endothelium, and many others. Asidefrom skin, the foregoing cell types are harbored as stem cell populations in the marrow, in addition to those of the hematopoietic and immune systems, but the diversity of mesenchymal and possibly other cell types in the marrow still needs to be probed. Stimulating factors, the cytokines,which move some of the cells into the circulation, will be important for engineering Acellular Scaffolds. Other stem cells are available to Tissue Engineering, such as the satellite cells found in striated muscle and to some degree keratinocytes of the skin. Where host cells are available, an acellular scaffold, particularly one enhanced with signals and possessing the binding sites needed for cell attachment, can mobilize host cells that will populate the Prosthesis.

Cancer stem cells
Mesenchymal stem cells
Stem cell therapy
Hematopoietic stem cells
Embryonic stem cells
Tissue specific stem cells
Induced pluripotent stem cells (IPSC)
Amniotic stem cell

Tissue Engineering
Tissue Engineering is an inter disciplinary course dealing with the building up of new Organs. It reveals us the truth that the nature can be imitated by the evaluation of tissue engineering. It substitutes the biological functions by replacing the replaced or damaged tissues by the combination of cells, organic materials and biochemical factors. It involves implantation, Restoration and regeneration of tissues. The main goal of tissue engineering is to develop the diseased or damaged tissues in a body or Cells attached to ECM (Extra Cellular Matrix).

Animal models of tissue regeneration
Intrinsic tissue regeneration
Guided tissue regeneration
Human tissue regeneration
In Silico tissue engineering

Regenerative Medicine
As we grow older our body parts fail to function in a normal way. Our current Medical Technology helps in regenerating the damaged body parts. Many species can regenerate by themselves. For example a Salomon can regrow its limbs, tails etc. whereas inhuman it is possible only for the liver to regenerate. Thus Regenerative Medicine promises the repair of body parts with their own living tissues by inculcating Scaffolds.

Molecular fundamentals of regeneration
Treatment models
Recapitulating tissue and organ structure

Lund Stem Cell Center
Scaffolds in Tissue Engineering
Scaffolds are Biomaterials coated with our body cells reproducing cartilages, kidneys and even complex Organs like heart and lungs. Scaffolds are a potential to change the way we live. The type of composition depends on Tissue but involves

Structural protein- collagen, elastin
Adhesive protein- fibronectin, laminin
Proteoglycans including polysaccharides and glycosaminoglycans (GAGS)

Biologic Tissues consist of the cells,the extracellular matrix (made up of a complex of cell secretions immobilized in spaces continuous with cells), and the signaling systems, which are brought into play through differential activation of Genes or cascades of genes whose secreted or transcriptional products are responsible for cueing tissue building and differentiation. The principal components of scaffolds (into which the extracellular matrix is organized in actual tissues) are collagen Biopolymers, mainly in the form of fibers and fibrils. Other forms of polymer organization have also been used (gels, foams, and membranes)for engineering tissue substitutes. The various forms can be combined in the laboratory to create imitations of biopolymer organization in specific tissues. Scaffolds can be enriched with signaling molecules,which may be bound to them or infused into them.

Cell seeding
Cell encapsulation and micro encapsulation
Cell sheets

Acellular Prosthesis
The use in Animal models and in humans of complex allogeneic and xenogeneic tissues, depleted of their living cells is by freezing or other methods, has been shown to be immunologically acceptable without the use of Immunosuppressants. It is known from studies in experimental animals and humans that acellular allogeneic and tissues, many available through tissue banks, is becoming well established. Further, the growing xenogeneic implants have been accepted by their hosts. Acellular collagen matrices,in the form of foams with and without bone precursor minerals, have been usedas vehicles for delivering a variety of Bone

Morphogenetic proteins
Prosthesis based breast reconstruction
Acellular dermal matrices
Soft tissue replacement

Regenerative Treatment Models
The field of Regenerative Medicine encompasses numerous strategies, including the use of materials and the novogenerated cells, as well as various combinations thereof, to take the place of missing tissue, effectively replacing it both structurally and functionally, or to contribute to Tissue healing. The body's innate healing response may also be leveraged to promote regeneration, although adult human spossess limited regenerative capacity in comparison with lower vertebrates.This review will first discuss regenerative medicine therapies that have reached the Market. Preclinical and early clinical work to alter the physiological environment of the patient by the introduction of materials,living cells, or growth factors either to replace lost tissue or to enhance the body's innate healing and repair mechanisms will then be reviewed. Strategies for improving the structural sophistication of Implantable Grafts and effectively using recently developed cell sources will also be discussed.

Formationof 3D Printing of Biomaterials
The formation of a 3-dimensional Structure of Biomaterials is known as the 3D printing. According to thenumber of dimensions in nano-scale, the Biomaterials are of three types- 3D (nano-particle), 2D (i.e. nano-fiber), and 1D(nano-sheet). 3-D Bio Printing is the creation of various cell patterns by using printing techniques along with the layer-by-layer method to form tissue mimetic structures without any loss in cell function that can be further used in Tissue Engineering. Bio printing helps in the research of drugs and pills by printing tissues and Organs. It is also used for micro-devices and micro arrays. The 3D printing materials market is expected to reach USD 1,409.5 Million by 2021 from USD 580.1 Million in 2017, at a CAGR of 22.60%.

High-energy handling of biomaterials
Electro Spinning and Allied Technologies
In 3D Bio-printing
Layer-by-layer: 1, 2 and 3D Nano Assembly
Hierarchical Three Dimensional Structures

Regenerative Medicine Market
There are strong pricing pressures from public healthcare payers globally as Governments try to reduce budget deficits. Regenerative Medicine could potentially save public health bodies money by reducing the need for long-term care and reducing associated disorders, with potential benefits for the world economy as a whole. The global market for Tissue Engineering and regeneration products reached $55.9 billion in 2010, is expected to reach $59.8 billion by 2011, and will further grow to $89.7 billion by 2016 at a compounded annual growth rate (CAGR) of 8.4%. It grows to $135 billion to 2024. The contribution of the European region was 43.3% of the market in 2010, a value of $24.2 billion. The market is expected to reach $25.5 billion by 2011 and will further grow to$36.1 billion by 2016 at a CAGR of 7.2%. It grows to $65 billion to 2024.

Bone Tissue Engineering
Tissue building of musculature tissues, especially bone and ligament, is an emerging field. In bone,innovation has focused on bone graft materials and the advancement of biodegradable frameworks. Tissue designing methodologies has included cell and Gene Therapy.

3D Bio-printing Techniques
The 3D Bio-printing uses techniques to combine the cells, growth factors and Bio materials to reach the maximum imitation. It can print tissues, Organs to incorporate drugs and pills and even scaffolds. It has found a massive use in the field of Regenerative Medicine.

Autonomous self-assembly

Organ Engineering
The transplantation of a whole organ with new therapeutic means that may overcome the Drawbacks involved in the current Artificial Organs. It is an exciting Research Area that aims at Regenerative Alternatives to harvested tissues for organ transplantation with soft tissues. As a result ofthe medical and market potential, there is significant academic and corporate interest in this technology.

Cellular Interactions
Hybrid artificial organs
Modeling of Organs
Microbial Sterilization
Microbial Decontamination

Ethical and Legal Issues
Tissue Engineering has been defined for little more than a decade. Much still needs to be learned and developed to provide a firm scientific basis for Therapeutic Application. Upto date, much of the progress in this field has been related to the development of model systems, which have suggested a variety of approaches.Also, certain principles of cell biology and tissue development have been delineated. The field can draw heavily on the explosion of new knowledge from several interrelated well-established disciplines, and, in turn, may promote the coalescence of relatively new, related fields to achieve their potential.The rate of new understanding of complex living systems has been explosive in the past three decades. Tissue engineering can draw on the knowledge gained in the fields of cell biology, biochemistry, and molecular biology and apply it to the engineering of new tissues. Likewise,advances in Materials Science, chemical engineering,and Bioengineering allow the rational application of engineering principles to living systems. Yet another branch of related knowledge is the area of human therapy as applied by surgeons and physicians.

Stem Cell Transplant
Stem Cell Transplantation is a system that is regularly suggested as a treatment choice for individuals with leukemia, different myeloma, and a few sorts of lymphoma. It might likewise be utilized to treat some hereditary sicknesses. In this process diseased bone marrow (the springy, greasy tissue found inside bigger bones) is treated with Chemotherapy as well as radiation Treatment and afterwards replaced with the stem cells.

Embryonic Stem Cells
Embryonic Stem Cells can develop (i.e. separate) into all subsidiaries of the three essential germ layers: ectoderm, endoderm and mesoderm which make them Pluripotent. As such, they can form into each of the more than 200 cell sorts ofthe grown-up body as long as they are indicated to do as such. They are recognized by two particular properties: their pluri potency, and their capacity to duplicate.

Applications in Regenerative Medicine and Tissue Engineering
Advancements in gene editing and Tissue Engineering technology have endorsed the ex vivo remodeling of stem cells grown into 3D Organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs,UCSCs, BMSCs, and iPSCs in Regenerative Medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

Wound healing

Future Scope- Biomedical Technology
Innovation guarantees numerous new advancements. Specialists are exploring different avenues regarding various treatment alternatives that utilize Tissue building. Tissue recovery will majorly affect twisted treatment, as patients get recovered tissue to fill insubstantial injuries that would be difficult to recuperate in the typical mold. Scarring would be diminished, giving more noteworthy personal satisfaction to patients after calamitous damage. Remade veins could be utilized to enable patients with cardiovascular illness to give better heart to work and a full come back to typical exercises. Liver Tissue from patients could be developed in lab to give methods for testing the most effective pharmaceuticals for treatment, rather than the experimentation strategy being utilized on the patient himself. Later on, entire organs might be developed to give transplant new parts to patients with kidney or heart damage. Athletic wounds to ligament and bone could be repaired all the more quickly with Regrown Tissue from the patient'sown body.

Please contact the event manager Marilyn (marilyn.b.turner(at)nyeventslist.com ) below for:
- Multiple participant discounts
- Price quotations or visa invitation letters
- Payment by alternate channels (PayPal, check, Western Union, wire transfers etc)
- Event sponsorship

Prices may go up any time. Service fees included in pricing.
This event is brought to you by:
Allied Academies - NewYorkEventsList


Share with friends

Date and Time


Venue will be informed to the Registered Participants

2132 NN Rijnlanderweg


View Map

Refund Policy

No Refunds

Save This Event

Event Saved